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ABSTRACT
One of the key problems in the field of image processing is
object tracking in video. Multiple objects, occlusion, and
non-stationary video are some of the challenges that one may
face in developing an effective approach. A less-studied ap-
proach considers swarm intelligence. This paper presents a
new and improved algorithm based on Bacterial Foraging Op-
timization in order to track multiple objects in real-time video
exposed to full and partial occlusion, using video from both
fixed and moving cameras. A comparison with various algo-
rithms is provided.

Index Terms— swarm intelligence, multi-object track-
ing, non-stationary video

1. INTRODUCTION

Non-stationary video may result from active panning and tilt-
ing cameras, as well as from cameras mounted on moving
platforms (such as from aerial, ground, or sea-faring vehi-
cles). Tracking in non-stationary video is a challenging prob-
lem and approaches to addressing it include image stabiliza-
tion and motion segmentation [1, 2]. This paper uses a dif-
ferent approach and presents an algorithm based on Bacterial
Foraging Optimization (BFO) [3] which is used to track mul-
tiple objects in a single camera, treating camera motion as a
part of the object motion.

2. RELATED WORK AND
CONTRIBUTIONS

Traditional approaches to tracking include mean shift [4],
CamShift [5], Kalman filters [6], and particle filters [7].
Mean shift and CamShift perform tracking based on distri-
butions (such as tracking using a color histogram or texture
features). Though simple to implement, they are not robust
to factors such as fast movement or occlusion. Kalman filters
are proven to be optimal in the sense of minimum square
error, but only when the noise is Gaussian; the dynamical
model used in Kalman filters is assumed to be linear and does
not work well when the noise is multi-modal. Particle filters

evolve from extended Kalman filters and focus on dealing
with non-linear dynamical models and multi-modal densi-
ties by sampling the prior probability. Thus, particle filters
can recover from occlusion to some extent, provided there
are enough particles on the image. In practice, however, the
larger the number of particles, the higher the computational
cost, thereby making real-time processing challenging.

In addition, other swarm intelligence algorithms have also
been considered for tracking. For instance, Particle Swarm
Optimization (PSO) [8] has been considered, both for single
and multiple targets [9]. These approaches often involve run-
ning the algorithm to convergence for every single frame.

Unlike traditional optimization problems with stationary
optima, tracking objects through video requires the algorithm
to find the object not once, but for potentially every frame.
With PSO, there are various approaches to dealing with mov-
ing objects. Approaches such as periodically giving a swarm
amnesia have been considered [10]. Decaying the score of the
best location by some percentage pdecay after each frame can
also be used to force the swarm to continually search for a
better location. Such methods are used to prevent the swarm
from completely converging to a single point.

The contributions of this paper are:

• the development of a new and improved Bacterial For-
aging algorithm with improved performance for multi-
ple object tracking in video

• performance comparison with other swarm intelligence
algorithms and a standard image processing/computer
vision tracking algorithm such as CamShift [5]

3. TECHNICAL APPROACH

3.1. Tracking Multiple Objects in Video

Multi-object tracking is a challenging problem for a number
of reasons. For instance, a tracker should be able to:

• handle partial and full occlusion

• scale to a potentially large number of objects



• operate in a real-time environment

Occlusion will likely occur as a result of object and scene
interaction. In addition, the occlusion introduced by hav-
ing multiple moving objects can occur arbitrarily; one cannot
rely on pre-established entrance and exit points. Processing
in real-time is also a highly desirable capability, as off-line
analysis removes the ability of responding (such as panning
or tilting to maintain the object in the camera’s field of view).
There are other approaches to the problem, but Bacterial For-
aging Optimization (BFO) has yet to be considered for multi-
object tracking in video.

3.2. Bacterial Foraging Optimization for Tracking

Bacterial Foraging Optimization is a stochastic evolutionary
search algorithm modeled after the behavior of E.coli bac-
teria [3]. A swarm consists of i bacteria particles or agents
which “swim” and “tumble” through an environment looking
for concentrations of food.

Swimming translates to each agent moving through the
search space in steps of size C and a run consists of a se-
ries of (up to) Ns swims. After each swim, agents evaluate
the fitness J i

current of the current position. At the end of
each run, an agent tumbles, or uses its flagella to randomly
rotate itself in a new direction. During a run, agents stop
swimming when they notice food concentration begins to de-
crease (J i

current < J i
previous), otherwise swimming up to Ns

times. In this way, the bacteria particles have programmed
themselves to climb gradients.

Agents who cannot find food (or areas of high fitness)
eventually starve to death. This is simulated in a reproduction
step where the Sr agents with the worst fitness are removed.
Conversely, the Sr agents with the best fitness go on to repro-
duce. In practice, this reproduction step essentially relocates
the Sr worst agents to the location of the Sr best agents and
keeps the size of the swarm constant.

Finally, all agents are subjected to an elimination-dispersal
step where each agent is suddenly relocated with probability
ped to a random location in the search space. This is done to
simulate a dynamic environment which can displace agents
(such as being introduced to a liquid). This important step
ensures that the swarm does not fully converge and that the
search space remains covered.

3.3. Details of Improved BFO Algorithm

While traditionally suited to searching for static or slow-
moving global optima, BFO can also be adapted to tracking
faster moving objects in video. We contribute three major
modifications:

1. Lookahead. In classical Bacterial Foraging, agents stop
swimming once the fitness gets worse. While it may be
more realistic, it also leaves agents in a known subopti-
mal position (the previous position was better). This can

Initialize S agents randomly in the image;
for each frame do

Evaluate fitness of previous best location;
If fitness is good enough, stop for this frame;
for up to Nr times do

Initialize health of each agent to 0;
for up to Nc times do

for each agent without immunity do
Evaluate fitness of current position;
Choose a random direction;
Move forward and evaluate fitness;
Continue moving (up to Ns times) until
fitness gets worse;
Add fitness of each evaluation to
agent’s health;
Move 1 step back;

Sort agents by health;
Relocate Sr agents with worst health to
location of Sr best agents with best health;
Grant these agents Sr best agents immunity
from movement;

for each agent without immunity do
With a probability of ped, relocate this agent to
a random location;

Reset immunity of all agents;

Algorithm 1: Improved Bacterial Foraging Algorithm
for tracking.

be modified so that agents are given the ability of looking
ahead and calculating the fitness of that position, and see-
ing whether or not they should move. This has the effect
of agents preferring to stay within boundaries of higher fit-
ness (which is useful when objects have a clear boundary
or steep gradients; this is largely impacted by the step size
C). Doing so allows the algorithm to move in bigger steps
without worrying about overstepping or stepping out of an
area of high fitness.

2. Elitism. In the classic BFO algorithm, all agents move at
every reproduction step, including agents who had the best
health on previous reproductions within the same frame.
Since frames do not change across sequential reproduction
steps, stopping the best agents (one from each reproduc-
tion) from further movement for the current frame has been
found to improve the algorithm’s accuracy. In addition, the
swarm’s best guess is selected from this group of agents
(as opposed to the best agent from the last reproduction).
Finally, granting these best agents with immunity to the
elimination-dispersal step allows the swarm to keep its best
agents on the target and having everyone else spread out.

3. Early Termination. The swarm is inherently insatiable
and thus always moving; even agents who are already on



may the best location will continue to move in succeeding
frames. This modification halts the swarm if the previous
best location maintains a fitness which exceeds threshold
Tt (which can be determined dynamically with a 2-class
Bayesian classifier on the object’s previous best scores).

Algorithm 1 incorporates the enhancements to the algo-
rithm for video tracking.

4. EXPERIMENTAL RESULTS

4.1. Data

A 30-second video was recorded using an Axis PTZ-215 cam-
era at 30 FPS (900 JPEG frames) and 704x480 resolution
(Figure 1). The video consists of 4 moving objects in cam-
era in constant motion and includes partial and full occlusion
of all targets.

The fitness function used in this paper is 20-bin color his-
togram [11] consisting of eight B −G and eight G− R bins
(chrominance) and four R+G+B bins (luminance), sampled
in a 9x9 circle centered on the evaluated point.

4.2. Parameters

Due to Elitism of agents, it is beneficial to use a high
elimination-dispersal probability Ped = 50%. This has
the effect of freezing the best agents in place and spread-
ing other agents out, thereby increasing the coverage of the
search space. For classic BFO however, a low ped = 2% is
chosen in order to allow the best agents to maintain their lo-
cations (without immunity to the elimination step, agents are
easily dispersed from a target). Similarly, a larger step size
C = 10 image pixels is selected in order to climb gradients
more quickly, whereas it is set to C = 2px in classical BFO
since there is a high risk of overstepping out of a good area
of fitness. Also, the number of chemotaxis steps Nc = 1
was experimentally determined after discovering that higher
track accuracy could consistently be achieved (with the same
amount of resources) by instead increasing Nr.

4.3. Implementation

The tested algorithms are implemented in C++ with OpenCV
and are performed on a 2.4GHz Intel Core2 CPU with no ad-
ditional multi-threading optimizations.

4.4. Evaluation Metrics

Track accuracy is measured as the percentage of frames in
which the swarm correctly locates the object:

accuracy =
# of frames object correctly located

total # of frames object is visible
(1)

Ground truth object locations are first established off-line.
Figure 2 shows an example fitness gradient and ground truth

Fig. 2. From left to right: sample frame, fitness gradient for a
green pillow, ground truth location of the green pillow, agents
exploring and climbing the fitness gradient of the frame.

for an example tracked object. Frames per second (FPS) per-
formance of each algorithm is also recorded (experiments are
executed on offline data in order to achieve frame rates unre-
stricted by limitations of the camera hardware).

4.5. Results

Figure 3 shows the performance of the algorithms on the
dataset. We see that the proposed BFO algorithm maintains
a higher track accuracy against classical BFO and PSO with
decay. Speed improvements can also be seen, with the pro-
posed changes being capable of producing 65-92% speed
improvements over classical BFO. Figure 4 shows the incre-
mental performance gain of each proposed improvement on
an example configuration. Lookahead capabilities introduces
a significant gain for accuracy as agents remain located on a
target (also resulting in a speed gain since fewer agents re-
main searching). Introducing elitism yields similar speed and
accuracy gains (fewer agents continue searching and a larger
pool of candidate positions to choose from, respectively).
Early termination produces only modest accuracy gains while
speed improvements are slightly more substantial.

Additionally, all the swarm intelligence algorithms out-
performed the CamShift algorithm in track accuracy. This
is because the algorithm expresses difficulty in reacquiring
targets following periods of occlusion or once it has lost a
target due to quick movement.

5. CONCLUSIONS

The results show that the proposed improvements to the BFO
algorithm can be used to track objects through occlusion and
camera movement, as well as out-perform Particle Swarm
Optimization using fewer resources. Future work extends this
approach to track multiple objects through multiple cameras.



Fig. 1. Four targets in a moving camera (red pillow, green pillow, person wearing a blue shirt, and yellow bag)

Fig. 3. Performance comparison on tracking 4 targets in a
moving camera, averaged over 5 tests. Parameters: PSO (2,048
agents/target, 1% decay), Classic BFO (50 agents/target, Nr = 10, Nc = 1,
Ns = 25, ped = 1, C = 2px), Proposed BFO (50 agents/target, Nr = 10,
Nc = 1, Ns = 25, ped = 50%, C = 10px)

Fig. 4. Incremental contribution of each improvement on a
BFO configuration. Parameters: 50 agents/target, Nr = 10, Nc = 1, Ns =
25, ped = 15%, C = 10px
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